direct product, metabelian, nilpotent (class 2), monomial, 3-elementary
Aliases: C2×C92⋊8C3, C92⋊21C6, C18.33- 1+2, C9⋊C9⋊11C6, (C9×C18)⋊8C3, C32⋊C9.22C6, (C3×C6).29C33, C33.13(C3×C6), C6.11(C9○He3), (C3×C18).12C32, (C32×C6).12C32, C32.33(C32×C6), C9.3(C2×3- 1+2), C3.9(C6×3- 1+2), C6.9(C3×3- 1+2), (C6×3- 1+2).6C3, (C3×3- 1+2).9C6, (C2×C9⋊C9)⋊8C3, (C3×C9).29(C3×C6), C3.11(C2×C9○He3), (C2×C32⋊C9).13C3, SmallGroup(486,205)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C2×C92⋊8C3
G = < a,b,c,d | a2=b9=c9=d3=1, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=bc3, dcd-1=b6c7 >
Subgroups: 198 in 110 conjugacy classes, 72 normal (16 characteristic)
C1, C2, C3, C3, C3, C6, C6, C6, C9, C9, C32, C32, C18, C18, C3×C6, C3×C6, C3×C9, C3×C9, 3- 1+2, C33, C3×C18, C3×C18, C2×3- 1+2, C32×C6, C92, C32⋊C9, C9⋊C9, C3×3- 1+2, C9×C18, C2×C32⋊C9, C2×C9⋊C9, C6×3- 1+2, C92⋊8C3, C2×C92⋊8C3
Quotients: C1, C2, C3, C6, C32, C3×C6, 3- 1+2, C33, C2×3- 1+2, C32×C6, C3×3- 1+2, C9○He3, C6×3- 1+2, C2×C9○He3, C92⋊8C3, C2×C92⋊8C3
(1 107)(2 108)(3 100)(4 101)(5 102)(6 103)(7 104)(8 105)(9 106)(10 144)(11 136)(12 137)(13 138)(14 139)(15 140)(16 141)(17 142)(18 143)(19 124)(20 125)(21 126)(22 118)(23 119)(24 120)(25 121)(26 122)(27 123)(28 83)(29 84)(30 85)(31 86)(32 87)(33 88)(34 89)(35 90)(36 82)(37 98)(38 99)(39 91)(40 92)(41 93)(42 94)(43 95)(44 96)(45 97)(46 127)(47 128)(48 129)(49 130)(50 131)(51 132)(52 133)(53 134)(54 135)(55 110)(56 111)(57 112)(58 113)(59 114)(60 115)(61 116)(62 117)(63 109)(64 145)(65 146)(66 147)(67 148)(68 149)(69 150)(70 151)(71 152)(72 153)(73 154)(74 155)(75 156)(76 157)(77 158)(78 159)(79 160)(80 161)(81 162)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81)(82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99)(100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117)(118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135)(136 137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152 153)(154 155 156 157 158 159 160 161 162)
(1 113 86 77 17 20 37 70 53)(2 114 87 78 18 21 38 71 54)(3 115 88 79 10 22 39 72 46)(4 116 89 80 11 23 40 64 47)(5 117 90 81 12 24 41 65 48)(6 109 82 73 13 25 42 66 49)(7 110 83 74 14 26 43 67 50)(8 111 84 75 15 27 44 68 51)(9 112 85 76 16 19 45 69 52)(28 155 139 122 95 148 131 104 55)(29 156 140 123 96 149 132 105 56)(30 157 141 124 97 150 133 106 57)(31 158 142 125 98 151 134 107 58)(32 159 143 126 99 152 135 108 59)(33 160 144 118 91 153 127 100 60)(34 161 136 119 92 145 128 101 61)(35 162 137 120 93 146 129 102 62)(36 154 138 121 94 147 130 103 63)
(2 38 78)(3 79 39)(5 41 81)(6 73 42)(8 44 75)(9 76 45)(10 109 69)(11 67 113)(12 15 18)(13 112 72)(14 70 116)(16 115 66)(17 64 110)(19 25 22)(20 83 47)(21 51 90)(23 86 50)(24 54 84)(26 89 53)(27 48 87)(28 128 125)(29 120 135)(30 36 33)(31 131 119)(32 123 129)(34 134 122)(35 126 132)(46 52 49)(55 142 145)(56 59 62)(57 153 138)(58 136 148)(60 147 141)(61 139 151)(63 150 144)(65 68 71)(82 88 85)(91 100 160)(93 162 102)(94 103 154)(96 156 105)(97 106 157)(99 159 108)(111 114 117)(118 124 121)(127 133 130)(137 140 143)(146 149 152)
G:=sub<Sym(162)| (1,107)(2,108)(3,100)(4,101)(5,102)(6,103)(7,104)(8,105)(9,106)(10,144)(11,136)(12,137)(13,138)(14,139)(15,140)(16,141)(17,142)(18,143)(19,124)(20,125)(21,126)(22,118)(23,119)(24,120)(25,121)(26,122)(27,123)(28,83)(29,84)(30,85)(31,86)(32,87)(33,88)(34,89)(35,90)(36,82)(37,98)(38,99)(39,91)(40,92)(41,93)(42,94)(43,95)(44,96)(45,97)(46,127)(47,128)(48,129)(49,130)(50,131)(51,132)(52,133)(53,134)(54,135)(55,110)(56,111)(57,112)(58,113)(59,114)(60,115)(61,116)(62,117)(63,109)(64,145)(65,146)(66,147)(67,148)(68,149)(69,150)(70,151)(71,152)(72,153)(73,154)(74,155)(75,156)(76,157)(77,158)(78,159)(79,160)(80,161)(81,162), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153)(154,155,156,157,158,159,160,161,162), (1,113,86,77,17,20,37,70,53)(2,114,87,78,18,21,38,71,54)(3,115,88,79,10,22,39,72,46)(4,116,89,80,11,23,40,64,47)(5,117,90,81,12,24,41,65,48)(6,109,82,73,13,25,42,66,49)(7,110,83,74,14,26,43,67,50)(8,111,84,75,15,27,44,68,51)(9,112,85,76,16,19,45,69,52)(28,155,139,122,95,148,131,104,55)(29,156,140,123,96,149,132,105,56)(30,157,141,124,97,150,133,106,57)(31,158,142,125,98,151,134,107,58)(32,159,143,126,99,152,135,108,59)(33,160,144,118,91,153,127,100,60)(34,161,136,119,92,145,128,101,61)(35,162,137,120,93,146,129,102,62)(36,154,138,121,94,147,130,103,63), (2,38,78)(3,79,39)(5,41,81)(6,73,42)(8,44,75)(9,76,45)(10,109,69)(11,67,113)(12,15,18)(13,112,72)(14,70,116)(16,115,66)(17,64,110)(19,25,22)(20,83,47)(21,51,90)(23,86,50)(24,54,84)(26,89,53)(27,48,87)(28,128,125)(29,120,135)(30,36,33)(31,131,119)(32,123,129)(34,134,122)(35,126,132)(46,52,49)(55,142,145)(56,59,62)(57,153,138)(58,136,148)(60,147,141)(61,139,151)(63,150,144)(65,68,71)(82,88,85)(91,100,160)(93,162,102)(94,103,154)(96,156,105)(97,106,157)(99,159,108)(111,114,117)(118,124,121)(127,133,130)(137,140,143)(146,149,152)>;
G:=Group( (1,107)(2,108)(3,100)(4,101)(5,102)(6,103)(7,104)(8,105)(9,106)(10,144)(11,136)(12,137)(13,138)(14,139)(15,140)(16,141)(17,142)(18,143)(19,124)(20,125)(21,126)(22,118)(23,119)(24,120)(25,121)(26,122)(27,123)(28,83)(29,84)(30,85)(31,86)(32,87)(33,88)(34,89)(35,90)(36,82)(37,98)(38,99)(39,91)(40,92)(41,93)(42,94)(43,95)(44,96)(45,97)(46,127)(47,128)(48,129)(49,130)(50,131)(51,132)(52,133)(53,134)(54,135)(55,110)(56,111)(57,112)(58,113)(59,114)(60,115)(61,116)(62,117)(63,109)(64,145)(65,146)(66,147)(67,148)(68,149)(69,150)(70,151)(71,152)(72,153)(73,154)(74,155)(75,156)(76,157)(77,158)(78,159)(79,160)(80,161)(81,162), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153)(154,155,156,157,158,159,160,161,162), (1,113,86,77,17,20,37,70,53)(2,114,87,78,18,21,38,71,54)(3,115,88,79,10,22,39,72,46)(4,116,89,80,11,23,40,64,47)(5,117,90,81,12,24,41,65,48)(6,109,82,73,13,25,42,66,49)(7,110,83,74,14,26,43,67,50)(8,111,84,75,15,27,44,68,51)(9,112,85,76,16,19,45,69,52)(28,155,139,122,95,148,131,104,55)(29,156,140,123,96,149,132,105,56)(30,157,141,124,97,150,133,106,57)(31,158,142,125,98,151,134,107,58)(32,159,143,126,99,152,135,108,59)(33,160,144,118,91,153,127,100,60)(34,161,136,119,92,145,128,101,61)(35,162,137,120,93,146,129,102,62)(36,154,138,121,94,147,130,103,63), (2,38,78)(3,79,39)(5,41,81)(6,73,42)(8,44,75)(9,76,45)(10,109,69)(11,67,113)(12,15,18)(13,112,72)(14,70,116)(16,115,66)(17,64,110)(19,25,22)(20,83,47)(21,51,90)(23,86,50)(24,54,84)(26,89,53)(27,48,87)(28,128,125)(29,120,135)(30,36,33)(31,131,119)(32,123,129)(34,134,122)(35,126,132)(46,52,49)(55,142,145)(56,59,62)(57,153,138)(58,136,148)(60,147,141)(61,139,151)(63,150,144)(65,68,71)(82,88,85)(91,100,160)(93,162,102)(94,103,154)(96,156,105)(97,106,157)(99,159,108)(111,114,117)(118,124,121)(127,133,130)(137,140,143)(146,149,152) );
G=PermutationGroup([[(1,107),(2,108),(3,100),(4,101),(5,102),(6,103),(7,104),(8,105),(9,106),(10,144),(11,136),(12,137),(13,138),(14,139),(15,140),(16,141),(17,142),(18,143),(19,124),(20,125),(21,126),(22,118),(23,119),(24,120),(25,121),(26,122),(27,123),(28,83),(29,84),(30,85),(31,86),(32,87),(33,88),(34,89),(35,90),(36,82),(37,98),(38,99),(39,91),(40,92),(41,93),(42,94),(43,95),(44,96),(45,97),(46,127),(47,128),(48,129),(49,130),(50,131),(51,132),(52,133),(53,134),(54,135),(55,110),(56,111),(57,112),(58,113),(59,114),(60,115),(61,116),(62,117),(63,109),(64,145),(65,146),(66,147),(67,148),(68,149),(69,150),(70,151),(71,152),(72,153),(73,154),(74,155),(75,156),(76,157),(77,158),(78,159),(79,160),(80,161),(81,162)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81),(82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99),(100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117),(118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135),(136,137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152,153),(154,155,156,157,158,159,160,161,162)], [(1,113,86,77,17,20,37,70,53),(2,114,87,78,18,21,38,71,54),(3,115,88,79,10,22,39,72,46),(4,116,89,80,11,23,40,64,47),(5,117,90,81,12,24,41,65,48),(6,109,82,73,13,25,42,66,49),(7,110,83,74,14,26,43,67,50),(8,111,84,75,15,27,44,68,51),(9,112,85,76,16,19,45,69,52),(28,155,139,122,95,148,131,104,55),(29,156,140,123,96,149,132,105,56),(30,157,141,124,97,150,133,106,57),(31,158,142,125,98,151,134,107,58),(32,159,143,126,99,152,135,108,59),(33,160,144,118,91,153,127,100,60),(34,161,136,119,92,145,128,101,61),(35,162,137,120,93,146,129,102,62),(36,154,138,121,94,147,130,103,63)], [(2,38,78),(3,79,39),(5,41,81),(6,73,42),(8,44,75),(9,76,45),(10,109,69),(11,67,113),(12,15,18),(13,112,72),(14,70,116),(16,115,66),(17,64,110),(19,25,22),(20,83,47),(21,51,90),(23,86,50),(24,54,84),(26,89,53),(27,48,87),(28,128,125),(29,120,135),(30,36,33),(31,131,119),(32,123,129),(34,134,122),(35,126,132),(46,52,49),(55,142,145),(56,59,62),(57,153,138),(58,136,148),(60,147,141),(61,139,151),(63,150,144),(65,68,71),(82,88,85),(91,100,160),(93,162,102),(94,103,154),(96,156,105),(97,106,157),(99,159,108),(111,114,117),(118,124,121),(127,133,130),(137,140,143),(146,149,152)]])
102 conjugacy classes
class | 1 | 2 | 3A | ··· | 3H | 3I | 3J | 6A | ··· | 6H | 6I | 6J | 9A | ··· | 9X | 9Y | ··· | 9AN | 18A | ··· | 18X | 18Y | ··· | 18AN |
order | 1 | 2 | 3 | ··· | 3 | 3 | 3 | 6 | ··· | 6 | 6 | 6 | 9 | ··· | 9 | 9 | ··· | 9 | 18 | ··· | 18 | 18 | ··· | 18 |
size | 1 | 1 | 1 | ··· | 1 | 9 | 9 | 1 | ··· | 1 | 9 | 9 | 3 | ··· | 3 | 9 | ··· | 9 | 3 | ··· | 3 | 9 | ··· | 9 |
102 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 3 | 3 | 3 |
type | + | + | ||||||||||||
image | C1 | C2 | C3 | C3 | C3 | C3 | C6 | C6 | C6 | C6 | 3- 1+2 | C2×3- 1+2 | C9○He3 | C2×C9○He3 |
kernel | C2×C92⋊8C3 | C92⋊8C3 | C9×C18 | C2×C32⋊C9 | C2×C9⋊C9 | C6×3- 1+2 | C92 | C32⋊C9 | C9⋊C9 | C3×3- 1+2 | C18 | C9 | C6 | C3 |
# reps | 1 | 1 | 2 | 6 | 16 | 2 | 2 | 6 | 16 | 2 | 6 | 6 | 18 | 18 |
Matrix representation of C2×C92⋊8C3 ►in GL6(𝔽19)
18 | 0 | 0 | 0 | 0 | 0 |
0 | 18 | 0 | 0 | 0 | 0 |
0 | 0 | 18 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
16 | 13 | 0 | 0 | 0 | 0 |
0 | 3 | 7 | 0 | 0 | 0 |
0 | 15 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 6 | 0 |
0 | 0 | 0 | 0 | 18 | 1 |
0 | 0 | 0 | 1 | 18 | 0 |
5 | 10 | 0 | 0 | 0 | 0 |
0 | 14 | 1 | 0 | 0 | 0 |
0 | 13 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 5 | 0 | 0 |
0 | 0 | 0 | 0 | 5 | 0 |
0 | 0 | 0 | 0 | 0 | 5 |
7 | 0 | 0 | 0 | 0 | 0 |
16 | 1 | 0 | 0 | 0 | 0 |
10 | 0 | 11 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 8 | 11 | 0 |
0 | 0 | 0 | 1 | 0 | 7 |
G:=sub<GL(6,GF(19))| [18,0,0,0,0,0,0,18,0,0,0,0,0,0,18,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[16,0,0,0,0,0,13,3,15,0,0,0,0,7,0,0,0,0,0,0,0,1,0,1,0,0,0,6,18,18,0,0,0,0,1,0],[5,0,0,0,0,0,10,14,13,0,0,0,0,1,0,0,0,0,0,0,0,5,0,0,0,0,0,0,5,0,0,0,0,0,0,5],[7,16,10,0,0,0,0,1,0,0,0,0,0,0,11,0,0,0,0,0,0,1,8,1,0,0,0,0,11,0,0,0,0,0,0,7] >;
C2×C92⋊8C3 in GAP, Magma, Sage, TeX
C_2\times C_9^2\rtimes_8C_3
% in TeX
G:=Group("C2xC9^2:8C3");
// GroupNames label
G:=SmallGroup(486,205);
// by ID
G=gap.SmallGroup(486,205);
# by ID
G:=PCGroup([6,-2,-3,-3,-3,-3,-3,548,1148,4113,165]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^9=c^9=d^3=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b*c^3,d*c*d^-1=b^6*c^7>;
// generators/relations